fun88体育官网登录入口_fun88体育在线投注fun88体育官网网站专注于电气产品领域10余年
致力打造电气配套产品行业品牌

高频电泳电源_电泳整流电源厂家-fun88体育官网登录入口_fun88体育在线投注

电泳电源服务热线:13964417937

fun88体育官网登录入口

首页 > 新闻资讯 > fun88体育官网登录入口

光模块封装工艺简介(一)?


时间: 2024-07-17 22:58:33

作者: fun88体育官网登录入口

  既然是简介,所以内容写得很基础,属于入门级的,文中的图片全部都是从网上找的。

  光模块按照部件可大致分为芯片、光器件、光模块三个层级;按照应用领域大概可分为电信应用、数通应用两个领域;按照内部器件的封装工艺可分为TO、Box、COB三大类。 但是,无论是哪种类型的光模块,其生产的基本工艺基本上可大致分为封装、测试两大块。

  那什么叫做器件封装呢?我的理解器件封装是利用胶水、焊料、机械、热量等手段把器件按照一定的先后次序结合形成一个整体的过程,就好像早上吃的煎饼,把面粉、鸡蛋、脆饼、烤肠、葱花等这些“器件”,按照一定的顺序,通过食用油、甜面酱、加热、卷起来等手段结合到一起,形成了美味的煎饼。在煎饼制作之前,蛋就是蛋,面就是面,但是在煎饼完成制作后,蛋和面形成了一个整体,不能再区分。

  那什么叫器件测试呢?实际上的意思就是评估封装好的器件性能,尝一口煎饼,看看是太咸了,还是太甜了。当然实际的器件测试远比这个要复杂,不过好在本文只谈工艺,不谈测试。

  下面的图片给出了光模块生产的基本工艺的几个关键工序,其中贴片、打线个工序在半导体芯片后段制程中也有,网上能找到非常多的资料,后面4个则是由光学特性带来的,资料相对来说少些。

  贴片,顾名思义,就是将片状的器件贴到某个地方。片状器件有光电芯片,比如激光器、光电二极管(PD/APD)、激光器驱动电芯片之类的。它们从大类上都属于半导体裸片器件,裸片的英文名叫做die,因此贴片在行业内也被称作die attach或die bonding。器件被贴到的地方叫做载体,英文名叫carrier,光器件贴片的载体比较多,比如PCBA的裸铜、可伐合金、AlN氮化铝陶瓷基板、钨铜等。数通领域大名鼎鼎的COB(chip on broad)封装就是使用PCBA的裸铜作为载体。

  贴片可大致分为手动和自动两种,手动贴片是上世纪的工艺,目前行业内的贴片都已经全部实现自动化了。一般贴电芯片的精度低些,贴光芯片的精度高些。

  如果我们凑近去看贴片机的内部,能看得到的有上料盒、吸嘴、点胶装置、摄像头、照明灯,另外就是一大堆的传动马达机械装置了。

  贴片的过程充满了科技感,有种看CCTV新闻联播的感觉在,整体过程分为上料、转运、贴装、下料4个步骤。

  上料盒一般有Blue tape蓝膜盒(上面一般粘LD、PD以及微小载体)、Waffle-PACK(有一个个凹陷的方格子,一般是TIA、Driver电芯片的来料包装)和GEL-PACK自吸盒(上面一般粘LD、PD以及微小载体)3种。由于贴片设备上料槽位规格的限制,有时候需要将物料从来料包装转移到上料盒中,在大批量生产时应该采取了专用自动化设备来完成转移,但不少厂家还是会手动用镊子夹取,镊子容易划伤、夹崩芯片, 质量风险很大。至于增加外观目检、规范镊子夹持的手法,这些虽能降低风险,但终究是治标不治本,尤其是规范镊子夹持手法,反正我是不相信有效的。

  吸嘴要根据芯片尺寸来定制,负责从上料盒中吸取芯片后搬运到指定位置,点胶头在载体上挤出一坨胶水,然后吸嘴扶着芯片对准位置,啪的往下一怼,就完成了。有的工艺路线中,会先把芯片转移到中转平台上,提前预热芯片或者是调整芯片的位置,然后再进行贴装。

  传统的工艺是用点胶机通过空气压力挤出胶水,胶量大小精度比较难控制,载体上面寸土寸金,胶量多了就会影响到别的器件。为客服这样的一个问题,产生了另一种工艺路线,不用点胶机,将胶棒或者芯片底部放到胶池里蘸一下,再贴到载体上,但是这个工艺也存在一个问题,就是胶棒或者芯片从胶池移动到载体的过程中,如果移动速度过快,容易将胶水甩到别的地方,造成污染甚至短路。

  摄像头和照明灯的作用是为了让给芯片找到贴片位置,高精度的贴片都是采用机器视觉结合载体上的mark点做定位的。

  所以,贴片的工艺技术要求是很高的,胶量要控制住,速度要控制住,位置更要控制住,真的挺难的。核心竞争力是惊人的控制力,该快的时候快,该慢的时候慢,该对准的时候对准,该出胶的时候出胶,胶的位置还得控制准确,不能甩到别的地方。

  在光通信行业,最常见的贴片粘接方式有共晶焊、导电银浆两种。

  导电银浆也被叫做银胶,工艺简单、成本低、使用范围最大,比如低速模块里的光芯片、面积比较大的TIA/Driver电芯片大多数都是用的银胶粘接。银胶工艺的一个特点是快,TO同轴封装的自动贴片机速度尤其快,半秒贴一个。贴完片后需要加热使银胶固化,温度在100℃左右,固化时间几个小时,批量放进温箱固化,效率非常高。

  共晶焊要提前将焊料弄到载体上,所以贴片过程中是看不到点胶动作的。

  常用的是金锡焊料Au80Sn20(重量比80:20),厚度在3-5um,怎么把焊料弄到载体上呢?一般都会采用蒸发或溅射工艺,光听这一个名字,应该就能猜到共晶焊的最大特点是“贵”!

  另外共晶焊过程中需要对焊料加热,冷却过程中金和锡两种金属在同一个温度(278℃)结晶,这就是共晶焊的由来,具体的知识能自行搜索“金锡二元相图”,我在这边就不详细展开了。共晶焊要加热要降温,整一个完整的过程大概要十几秒,非常耗时间。

  共晶焊有这么多缺点,那为什么还要用它呢?我们大家都知道,随着传输速率提高,器件对散热和高频信号衰减的要求也慢慢变得高,导电银浆电阻大,会对高频信号产生衰减,而金锡共晶焊是纯金属材料,电阻很小;共晶焊的导热性也优于导电银浆,剪切力可靠性也更好些。这些优点使共晶焊有了用武之地,目前行业内25G速率及以上的DFB激光器都是使用共晶焊工艺贴装的,其实看下来也能就在贴装激光器上用一用吧,毕竟效率太低了。

  从外观上,一般会在显微镜下观察溢胶情况,比如要求至少有三边溢胶。暴力的评价手段是用专用设备上的劈刀直接在芯片侧面施加推力,测量将芯片推下来需要的最小用力,同时观察载体上的芯片残留情况,叫做剪切力测试,标准方面行业内一般参考美军标MIL-STD-883 Method 2019 (DIE SHEAR STRENGTH)。剪切力的测量设备我知道的就只有Nordson DAGE这款,似乎已形成垄断了,下图是剪切力测试的示意图和Nordson DAGE设备的靓照。

  如果贴片没贴好,会发生啥问题呢?我想大概率是芯片直接掉下来吧。因为贴装的芯片基本都是发热大户,像是激光器芯片的电光转换率只有30%左右,绝大部分的能量都变成了热量,所以如果贴片有问题,大概率上芯片因为散热不良直接给烫死了。

  引线键合,俗称打线,英文名wire bonding,是金属线在热、压力、超声等能量结合下的一种电子内互联技术。引线键合是一种固态焊接工艺,键合过程中两种金属材料(金属线及焊盘)形成紧密接触,两种金属原子发生电子共享或原子相互扩散,从而使两种金属间实现原子量级上的键合。

  打线按照键合能量可大致分为热压键合、超声键合、热超声键合三种,按照键合线的材料分为金丝、铝丝、铜丝三种。光通信行业一般只用金丝热超声键合这一种,是因为光电芯片的表面普遍都会镀金,金的高频性能好,而热超声键合的温度比较低而且速度很快,可靠性更好。

  引线键合既要加热又要给超声波,所以肯定是要用键合设备的。除了显示器、显微镜和一堆电动马达装置外,最核心的部件就是一种叫做劈刀的东西,它负责对金线进行放电整形,牵引并形成焊接点。

  引线键合的步骤可以大概分为几个步骤,第一步设备对焊盘区域预加热,第二步劈刀通过离子化空气间隙打火 (Electronic Flame-off,EFO)将金线末端融化形成一个金球,第三步劈刀下压到焊盘上形成第一焊点(通常在芯片表面),第四步劈刀牵引金线形成线弧,第五步劈刀再次下压到焊盘形成第二焊点(通常在引线框架或者基板上),并折断金线。更多视频点击B站视频

  根据劈刀和焊点形状的不同,又可大致分为球焊和楔焊两种。球焊用的是毛细管劈刀,顾名思义,焊点是一个球状,焊盘接触面积大,可靠性好,而且打线速度很快,使用场景最多;楔焊用的是楔形劈刀,焊点是方形的,焊盘接触面积小,可靠性差,打线速度慢,一般只用于高频信号焊盘之间的打线。

  正如前文所说,打线利用的原子和原子之间的结合,原子之间如果存在别的物质,就会严重影响结合质量。有过补轮胎经验的朋友必须要知道,在刷胶水之前,师傅一般会用锉刀把轮胎漏气部分的塑料表面给磨掉,目的是去除掉比较脏的表面部分,确保胶水的粘接力。类似的,在打线前,会对器件进行等离子体清洗,确保焊盘优秀的可焊性。

  等离子体是由正离子、负离子和自由电子等带电粒子和不带电的中性粒子如激发态分子以及自由基组成的部分电离的气体,由于其正负电荷总是相等的,所以称为等离子体,是物质常见的固体、液体、气态以外的第四态。气体被激发成等离子态有多种方式,如激光、微波、电晕放电、热电离和弧光放电等。在电子清洗中,主要是低压气体辉光等离子体。一些非聚合性无机气体(Ar2、N2、H2和02等)在高频低压下被激发,产生含有离子、激发态分子和自由基等多种活性粒子。一般在等离子清洗中,可把活化气体分为两类:一类为惰性气体的等离子体(如Ar2和N2等);另一类为反应性气体的等离子体(如02和H2等)。光通信行业基本用惰性气体(如果我没记错的话)。

  等离子体清洗机的模样见下图,观察窗的颜色很有科技感,这是用来屏蔽工作时会产生紫外线。等离子体清洗的大概原理是用这些活性粒子(图中蓝色球)和焊盘表面的碳氢有机物质(图中黑色球)反应,以水汽和CO2的形式脱离表面。水汽和CO2无毒无害,不需要做废弃净化处理,这也是等离子体清洗的优势之一。

  如何评价等离子体清洗的效果呢?一般在焊盘表面滴水,然后测量水滴和焊盘之间的夹角,水滴角越小(40度),说明焊盘活性好,可焊性越好,这和SMT焊接里的焊点润湿角类似。必须要格外注意的是,等离子体清洗结束到打线之间的时间窗口是有限制的,有研究表明最好是小于4小时,否则焊盘表面的活性就会下降,相当于等离子体清洗白洗了。

  外观目检上,可以借鉴参考美军标MIL-STD-883 Method 2010 INTERNAL VISUAL,一般会关注金线是否有异常弯曲、金球和焊盘的重合面积。这些都是非常容易直观发现的问题,好比去医院做个B超啥的,大毛病一眼就看出来了。

  但打线不同于贴片,有些潜在性的问题潜伏期比较长往往要等到产品运行一段时间后才会完全暴露出来,这是很要命的事情。比如键合区域的脏污会导致焊盘脱落,脏污的来源很多,空气中飘过来的,返工时带入的,等离子清理洗涤设施或者胶水烘烤设备内引入的等等。

  对于这类脏污问题,提高目检显微镜倍率是一个常用闭环改善手段,MIL-STD-883里对显微镜倍率也有定义,光通信行业内芯片焊盘的直径一般都在70um,使用1mil(25um)的金线,但如果考虑到脏污的特征尺寸,最好还是选100倍以上的显微镜进行目检。只是这样的显微镜比较贵而且检测效率比较低,也有行业内很多厂家使用是50倍以下的显微镜(显微镜的模样有很大区别)来检查金线外观。

  对于TIA、Driver这种多个焊盘的电芯片,打线的先后次序也有要求,一般要先打GND,再打VCC,最后打其他的信号脚。为什么是这个次序?主要是为了能够更好的保证电芯片在打线过程中的静电释放,ESD这种东西最麻烦。

  最后,电芯片的焊盘表面一般是铝Al,由于Au和Al两种不同原子扩散速率不同,在金属间化合物IMC界面附近会形成柯肯达尔(Kirkendall)空穴,导致焊点分离失效。温度越高原子扩散速度越快,因此产品完成打线后要及时下料,不能长时间在打线机台上持续加热。

  贴片的目的是将芯片贴到载体上,打线则是让芯片和外部形成电气连接,具备这2个条件后,接下来就是芯片老化了。

  老化,也可以称为老炼,英文名叫burn in,按照MIL-STD-883的定义,其目的是为了筛选或者剔除那些勉强合格的器件。这一些器件或是本身就具有固有缺陷,或其制造工艺控制不当产生缺陷,这些缺陷会造成与时间和应力相关的失效。如果不进行老化筛选,这些有缺陷的器件在使用条件下会出现初期致命失效或早期寿命失效。因此,筛选时用最大额度工作条件或在最大额度工作条件之上对器件施加应力,或施加能以相等的或更高的灵敏度揭示出随时间和应力变化的失效模式的等效筛选条件。*

  老化是一种筛选测试,用于剔除那些有早期失效缺陷的器件,表现在著名的失效率浴盆曲线上,如下图,阴影部分就是老化的收益,老化后的产品整体的早期失效率降低,更早地进入随机失效阶段。

  光模块内部的激光器由于结构和制程工艺复杂,有必要进行老化,其他光电器件除APD外,不有必要进行老化。

  在目前大部分光模块厂家的生产工序中,一般有两道针对激光器的burn in筛选测试。

  第一道是激光器的管芯级,是在激光器完成必要的生产步骤,如外延生长、刻蚀、外观检查后,装载到专用的老化夹具上进行,有很成熟的商业化设备,国外厂家有ILX Lightwave、Chroma,国内厂家上海菲莱(Feedlight)、苏州联讯(Stelight)。根据不同测试方案,可以区分为在线测试老化和分立测试老化。在线测试老化能持续记录BI过程中的激光器数据,但是测试成本高,通常用于设计阶段的少量样品验证测试。分立测试老化是在老化开始和结束时分别记录激光器数据,测试成本低,通常用于批量化生产。

  第二道是光模块级,是在激光器组装到光模块内后,通过测试夹具进行的,目前尚没有商业化设备,多数光模块厂商使用自研设备做测试。在测试方案上,在线测试和分立测试都有,一般根据模块的DDM进行激光器参数记录,因此从成本上并无太大差异。

  从生产和成本管控角度上看,第一道管芯级激光器burn in筛选测试应力大,目的是尽可能地筛选出早期失效产品,第二道模块级burn in测试更多地只是对第一道测试的补充。

  下面我们着重介绍管芯级激光器的burn in测试。对于不一样的激光器,老化筛选的典型条件如下表,电流和温度条件满足“最大额度工作条件或在最大额度工作条件之上”原则,例如DFB激光器的正常工作电流一般是60mA,老化的电流是120mA。至于具体的温度、电流、时间条件,一般是由激光器芯片厂家经过大量试验后确定下来的。

  激光器老化设备基本相似,设备外壳加后面的背板,激光器被安装到抽屉式或插卡式老化板上,然后再插入到背板供电。TO封装和CoC封装激光器有专用的老化板,TO直接将管脚插入到基座上就行了,CoC挺麻烦,大部分厂家需要人工用镊子夹取安装,个别光模块厂家可以用贴片机自动安装。COB结构中的VCSEL老化则是直接用模块PCBA上的金手指进行供电,Driver芯片本身也专用的burn in模式。

  如何评估芯片老化的可靠性?回答这样的一个问题,就是回答“如何评估芯片老化的有效性?”。

  芯片老化的目的是为了充分筛选出批次内产品的早期失效,那怎么样确定该批次内的早期失效已经筛选干净了呢?大概的方法有下面几种。

  第一种是将筛选后的该批次产品发到市场端,然后监控记录市场失效数量和返回时间,如果失效数量在开始的一个时间段内存在一个峰值,说明老化条件的有效性较差,导致部分早期失效产品未被充分筛选流入市场;如果失效数量经过一段时间后稳定,则说明老化条件有效性较好。具体参考下面的曲线,原理上应该不难理解。

  第二种是将老化筛选后的该批次产品做加速寿命测试,例如高温工作运行(HTOL),着重关注寿命测试前期是否有新的产品失效,它的基本思想和第一种方法是一样的,只是这种方法不会给用户带来麻烦。

  第三种是将老化筛选后的该批次产品再进行一段时间的老化筛选测试,着重关注新增的老化筛选测试种是否有新的产品失效,老化条件对应的寿命加速因子比较大,因此相比于第二种方法,这样的解决方法的时间效率高。

  以上三种方法本质上都是将筛选后的产品再运行一段时间,“让子弹飞一会儿”,来评估老化条件有效性。行业内专业技术人员用Weibull分布方法来评估有效性,但学术色彩很浓重,自己觉得都没有上面这三种方法来的简单粗暴。

  众所周知,筛选测试是只花钱但不产生利润的,有些工艺成熟的半导体芯片已经不做芯片老化了,但是激光器芯片的老化目前是必须要做的。怎么来降低激光器芯片老化测试的成本呢?除了定期优化老化条件外,我觉得最好的办法是建立有效的良率监控预警体系。目前光通信行业里的激光器已经很少存在很明显的寿命类可靠性问题了,往往是由于芯片制程中的波动带来激光器批次质量风险,我们大家可以通过良率监控预警体系将这些波动识别出来,再对波动批次芯片单独定制老化筛选。

fun88体育官网登录入口_fun88体育在线投注版权所有      /ms/static/picture/wkj0iwdl8cmac7l_aabloa4rbhs202.png鲁公网安备 鲁ICP备16034677号-2    鲁ICP备16034677号-2